Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Emerg Microbes Infect ; : 1-51, 2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2268776

ABSTRACT

Prolonged infection and possible evolution of SARS-CoV-2 in patients living with uncontrolled HIV-1 infection highlight the importance of an effective vaccination regimen, yet the immunogenicity of COVID-19 vaccines and predictive immune biomarkers have not been well investigated. Herein, we report that the magnitude and persistence of antibody and cell-mediated immunity (CMI) elicited by an Ad5-vectored COVID-19 vaccine are impaired in SIV-infected macaques with high viral loads (> 105 genome copies per ml plasma, SIVhi) but not in macaques with low viral loads (< 105, SIVlow). After a second vaccination, the immune responses are robustly enhanced in all uninfected and SIVlow macaques. These responses also show a moderate increase in 70% SIVhi macaques but decline sharply soon after. Further analysis reveals that decreased antibody and CMI responses are associated with reduced circulating follicular helper T cell (TFH) counts and aberrant CD4/CD8 ratios, respectively, indicating that dysregulation of CD4+ T cells by SIV infection impairs the COVID-19 vaccine-induced immunity. Ad5-vectored COVID-19 vaccine shows no impact on SIV loads or SIV-specific CMI responses. Our study underscores the necessity of frequent booster vaccinations in HIV-infected patients and provides indicative biomarkers for predicting vaccination effectiveness in these patients.

2.
Hum Vaccin Immunother ; 19(1): 2171233, 2023 12 31.
Article in English | MEDLINE | ID: covidwho-2246307

ABSTRACT

The immune escape mutations of SARS-CoV-2 variants emerged frequently, posing a new challenge to weaken the protective efficacy of current vaccines. Thus, the development of novel SARS-CoV-2 vaccines is of great significance for future epidemic prevention and control. We herein reported constructing the attenuated Mycobacterium smegmatis (M. smegmatis) as a bacterial surface display system to carry the spike (S) and nucleocapsid (N) of SARS-CoV-2. To mimic the native localization on the surface of viral particles, the S or N antigen was fused with truncated PE_PGRS33 protein, which is a transportation component onto the cell wall of Mycobacterium tuberculosis (M.tb). The sub-cellular fraction analysis demonstrated that S or N protein was exactly expressed onto the surface (cell wall) of the recombinant M. smegmatis. After the immunization of the M. smegmatis-based COVID-19 vaccine candidate in mice, S or N antigen-specific T cell immune responses were effectively elicited, and the subsets of central memory CD4+ T cells and CD8+ T cells were significantly induced. Further analysis showed that there were some potential cross-reactive CTL epitopes between SARS-CoV-2 and M.smegmatis. Overall, our data provided insights that M. smegmatis-based bacterial surface display system could be a suitable vector for developing T cell-based vaccines against SARS-CoV-2 and other infectious diseases.


Subject(s)
COVID-19 , Mycobacterium smegmatis , Mice , Humans , Animals , Mycobacterium smegmatis/genetics , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
J Med Virol ; 2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2237083

ABSTRACT

Compared with the nucleic acid amplification test (NATT), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapid antigen self-testing (RAST) has advantages in speed and convenience. However, little is known about people's acceptance and influencing factors for SARS-CoV-2 RAST. A cross-sectional study was conducted from April 21 to 30, 2022 in China. The χ2 test and multivariate logistic regressions were used to identify the influencing factors. The structural equation model was used to test the extended protective motivation theory (PMT) model hypotheses. Among the total of 5107 participants, 62.5% were willing to accept the SARS-CoV-2 RAST. There were significant differences in acceptance among different residences (p < 0.001), educational level (p < 0.001), occupation (p < 0.001), monthly income (p < 0.001), travel frequency (p < 0.05), and feelings about NATT (p < 0.001). Response efficacy (ß = 0.05; p = 0.025) and self-efficacy (ß = 0.84; p < 0.001) had a positive effect, while response cost showed a negative effect (ß = -0.07; p < 0.001). The public's major concerns about SARS-CoV-2 RAST are its reliability, testing method, price, and authority. Overall, a moderate intention to use SARS-CoV-2 RAST was found among the Chinese population. The extended PMT can be used for the prediction of intention to accept the RAST. We need to take measures to increase people's acceptance of SARS-CoV-2 RAST.

4.
J Med Virol ; 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2232560

ABSTRACT

With a large population most susceptible to Omicron and emerging SARS-CoV-2 variants, China faces uncertain scenarios if reopening its border. Thus, we aimed to predict the impact of combination preventative interventions on hospitalization and death. An age-stratified susceptible-infectious-quarantined-hospitalized-removed-susceptible (SIQHRS) model based on the new guidelines of COVID-19 diagnosis and treatment (the ninth edition) was constructed to simulate the transmission dynamics of Omicron within 365 days. At baseline, we assumed no interventions other than 60% booster vaccination in individuals aged <=60 years and 80% in individuals aged >60 years, quarantine and hospitalization. Oral antiviral medications for COVID-19 (e.g. BRII-196/BRII-198) and non-pharmaceutical interventions (NPIs) such as social distancing and antigen self-testing were considered in subsequent scenarios. Sensitivity analyses were conducted to reflect different levels of interventions. A total of 0.73 billion cumulative quarantines (95% CI 0.53-0.83), 33.59 million hospitalizations (22.41-39.31), and 0.62 million deaths (0.40-0.75) are expected in 365 days. The case fatality rate with pneumonia symptoms (moderate, severe and critical illness) is expected to be 1.83% (1.68-1.99%) and the infected fatality rate 0.38‰ (0.33-0.42‰). The highest existing hospitalization and ICU occupations are 3.11 (0.30-3.85) and 20.33 (2.01-25.20) times of capacity, respectively. Sensitivity analysis showed that interventions can be adjusted to meet certain conditions to reduce the total number of infections and deaths. In conclusion, after sufficient respiratory and ICU beds are prepared and the relaxed NPIs are in place, the SARS-CoV-2 Omicron variant would not seriously impact the health system. This article is protected by copyright. All rights reserved.

5.
Front Immunol ; 13: 997851, 2022.
Article in English | MEDLINE | ID: covidwho-2115356

ABSTRACT

The immune system is highly networked and complex, which is continuously changing as encountering old and new pathogens. However, reductionism-based researches do not give a systematic understanding of the molecular mechanism of the immune response and viral pathogenesis. Here, we present HUMPPI-2022, a high-quality human protein-protein interaction (PPI) network, containing > 11,000 protein-coding genes with > 78,000 interactions. The network topology and functional characteristics analyses of the immune-related genes (IRGs) reveal that IRGs are mostly located in the center of the network and link genes of diverse biological processes, which may reflect the gene pleiotropy phenomenon. Moreover, the virus-human interactions reveal that pan-viral targets are mostly hubs, located in the center of the network and enriched in fundamental biological processes, but not for coronavirus. Finally, gene age effect was analyzed from the view of the host network for IRGs and virally-targeted genes (VTGs) during evolution, with IRGs gradually became hubs and integrated into host network through bridging functionally differentiated modules. Briefly, HUMPPI-2022 serves as a valuable resource for gaining a better understanding of the composition and evolution of human immune system, as well as the pathogenesis of viruses.


Subject(s)
Viruses , Humans , Viruses/genetics , Protein Interaction Maps , Immune System
6.
Antiviral Res ; 205: 105383, 2022 09.
Article in English | MEDLINE | ID: covidwho-1966338

ABSTRACT

The frequently emerging SARS-CoV-2 variants have weakened the effectiveness of existing COVID-19 vaccines and neutralizing antibody therapy. Nevertheless, the infections of SARS-CoV-2 variants still depend on angiotensin-converting enzyme 2 (ACE2) receptor-mediated cell entry, and thus the soluble human ACE2 (shACE2) is a potential decoy for broadly blocking SARS-CoV-2 variants. In this study, we firstly generated the recombinant AAVrh10-vectored shACE2 constructs, a kind of adeno-associated virus (AAV) serotype with pulmonary tissue tropism, and then validated its inhibition capacity against SARS-CoV-2 infection. To further optimize the minimized ACE2 functional domain candidates, a comprehensive analysis was performed to clarify the interactions between the ACE2 orthologs from various species and the receptor binding domain (RBD) of SARS-CoV-2 spike (S) protein. Based on the key interface amino acids, we designed a series of truncated ACE2 orthologs, and then assessed their potential affinity to bind to SARS-CoV-2 variants RBD in silico. Of note, we found that the 24-83aa fragment of dog ACE2 (dACE224-83) had a higher affinity to the RBD of SARS-CoV-2 variants than that of human ACE2. Importantly, AAVrh10-vectored shACE2 or dACE224-83 constructs exhibited a broadly blockage breadth against SARS-CoV-2 prototype and variants in vitro and ex vivo. Collectively, these data highlighted a promising therapeutic strategy against SARS-CoV-2 variants.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/therapy , COVID-19 Vaccines , Dogs , Humans , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Virus Internalization
7.
J Med Virol ; 94(8): 3722-3730, 2022 08.
Article in English | MEDLINE | ID: covidwho-1888725

ABSTRACT

To mitigate SARS-CoV-2 transmission, vaccines have been urgently approved. With their limited availability, it is critical to distribute the vaccines reasonably. We simulated the SARS-CoV-2 transmission for 365 days over four intervention periods: free transmission, structural mitigation, personal mitigation, and vaccination. Sensitivity analyses were performed to obtain robust results. We further evaluated two proposed vaccination allocations, including one-dose-high-coverage and two-doses-low-coverage, when the supply was low. 33.35% (infection rate, 2.68 in 10 million people) and 40.54% (2.36) of confirmed cases could be avoided as the nonpharmaceutical interventions (NPIs) adherence rate rose from 50% to 70%. As the vaccination coverage reached 60% and 80%, the total infections could be reduced by 32.72% and 41.19%, compared to the number without vaccination. When the durations of immunity were 90 and 120 days, the infection rates were 2.67 and 2.38. As the asymptomatic infection rate rose from 30% to 50%, the infection rate increased 0.92 (SD, 0.16) times. Conditioned on 70% adherence rate, with the same amount of limited available vaccines, the 20% and 40% vaccination coverage of one-dose-high-coverage, the infection rates were 2.70 and 2.35; corresponding to the two-doses-low-coverage with 10% and 20% vaccination coverage, the infection rates were 3.22 and 2.92. Our results indicated as the duration of immunity prolonged, the second wave of SARS-CoV-2 would be delayed and the scale would be declined. On average, the total infections in two-doses-low-coverage was 1.48 times (SD, 0.24) as high as that in one-dose-high-coverage. It is crucial to encourage people in order to improve vaccination coverage and establish immune barriers. Particularly when the supply is limited, a wiser strategy to prevent SARS-CoV-2 is equally distributing doses to the same number of individuals. Besides vaccination, NPIs are equally critical to the prevention of widespread of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Humans , Models, Theoretical , Vaccination
8.
J Med Virol ; 94(9): 4115-4124, 2022 09.
Article in English | MEDLINE | ID: covidwho-1819377

ABSTRACT

The promotion of the booster shots against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is an open issue to be discussed. Little is known about the public intention and the influencing factors regarding the booster vaccine. A cross-sectional survey in Chinese adults was conducted using an online questionnaire, which designed on the basis of protection motivation theory (PMT) scale and vaccine hesitancy scale (VHS). Hierarchical multiple regression was used to compare the fitness of the PMT scale and VHS for predicting booster vaccination intention. Multivariable logistic regression was used to analyze the factors associated with the acceptance. Six thousand three hundred twenty-one (76.8%) of participants were willing to take the booster shot. However, the rest of the participants (23.2%) were still hesitant to take the booster vaccine. The PMT scale was more powerful than the VHS in explaining the vaccination intention. Participants with high perceived severity (adjusted odds ratio [aOR] = 0.69) and response cost (aOR = 0.47) were less willing to take the booster shots, but participants with high perceived susceptibility (aOR = 1.19), response efficacy (aOR = 2.13), and self-efficacy (aOR = 3.33) were more willing to take the booster shots. In summary, interventions based on PMT can provide guidance to ensure the acceptance of the booster vaccine.


Subject(s)
COVID-19 , Vaccines , Adult , COVID-19/prevention & control , China , Cross-Sectional Studies , Humans , Motivation , SARS-CoV-2 , Vaccination
9.
PLoS Pathog ; 18(3): e1010366, 2022 03.
Article in English | MEDLINE | ID: covidwho-1793485

ABSTRACT

Tryptophan (Trp) metabolism through the kynurenine pathway (KP) is well known to play a critical function in cancer, autoimmune and neurodegenerative diseases. However, its role in host-pathogen interactions has not been characterized yet. Herein, we identified that kynurenine-3-monooxygenase (KMO), a key rate-limiting enzyme in the KP, and quinolinic acid (QUIN), a key enzymatic product of KMO enzyme, exerted a novel antiviral function against a broad range of viruses. Mechanistically, QUIN induced the production of type I interferon (IFN-I) via activating the N-methyl-d-aspartate receptor (NMDAR) and Ca2+ influx to activate Calcium/calmodulin-dependent protein kinase II (CaMKII)/interferon regulatory factor 3 (IRF3). Importantly, QUIN treatment effectively inhibited viral infections and alleviated disease progression in mice. Furthermore, kmo-/- mice were vulnerable to pathogenic viral challenge with severe clinical symptoms. Collectively, our results demonstrated that KMO and its enzymatic product QUIN were potential therapeutics against emerging pathogenic viruses.


Subject(s)
Kynurenine 3-Monooxygenase , Virus Diseases , Animals , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Interferon Regulatory Factor-3/metabolism , Kynurenine/metabolism , Kynurenine 3-Monooxygenase/metabolism , Mice , Quinolinic Acid/metabolism , Quinolinic Acid/pharmacology , Virus Diseases/drug therapy
10.
Viruses ; 14(3)2022 03 03.
Article in English | MEDLINE | ID: covidwho-1765946

ABSTRACT

Numerous pathogenic microbes, including viruses, bacteria, and fungi, usually infect the host through the mucosal surfaces of the respiratory tract, gastrointestinal tract, and reproductive tract. The mucosa is well known to provide the first line of host defense against pathogen entry by physical, chemical, biological, and immunological barriers, and therefore, mucosa-targeting vaccination is emerging as a promising strategy for conferring superior protection. However, there are still many challenges to be solved to develop an effective mucosal vaccine, such as poor adhesion to the mucosal surface, insufficient uptake to break through the mucus, and the difficulty in avoiding strong degradation through the gastrointestinal tract. Recently, increasing efforts to overcome these issues have been made, and we herein summarize the latest findings on these strategies to develop mucosa-targeting vaccines, including a novel needle-free mucosa-targeting route, the development of mucosa-targeting vectors, the administration of mucosal adjuvants, encapsulating vaccines into nanoparticle formulations, and antigen design to conjugate with mucosa-targeting ligands. Our work will highlight the importance of further developing mucosal vaccine technology to combat the frequent outbreaks of infectious diseases.


Subject(s)
Communicable Diseases, Emerging , Vaccines , Adjuvants, Immunologic , Antigens , Communicable Diseases, Emerging/prevention & control , Humans , Immunity, Mucosal , Mucous Membrane , Vaccination
11.
Viruses ; 13(11)2021 11 08.
Article in English | MEDLINE | ID: covidwho-1512697

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters host cells mainly by the angiotensin converting enzyme 2 (ACE2) receptor, which can recognize the spike (S) protein by its extracellular domain. Previously, recombinant soluble ACE2 (sACE2) has been clinically used as a therapeutic treatment for cardiovascular diseases. Recent data demonstrated that sACE2 can also be exploited as a decoy to effectively inhibit the cell entry of SARS-CoV-2, through blocking SARS-CoV-2 binding to membrane-anchored ACE2. In this study, we summarized the current findings on the optimized sACE2-based strategies as a therapeutic agent, including Fc fusion to prolong the half-life of sACE2, deep mutagenesis to create high-affinity decoys for SARS-CoV-2, or designing the truncated functional fragments to enhance its safety, among others. Considering that COVID-19 patients are often accompanied by manifestations of cardiovascular complications, we think that administration of sACE2 in COVID-19 patients may be a promising therapeutic strategy to simultaneously treat both cardiovascular diseases and SARS-CoV-2 infection. This review would provide insights for the development of novel therapeutic agents against the COVID-19 pandemic.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/therapeutic use , COVID-19 Drug Treatment , COVID-19/virology , Cardiovascular Diseases/drug therapy , Recombinant Fusion Proteins/therapeutic use , SARS-CoV-2 , Animals , COVID-19/complications , Cardiovascular Diseases/complications , Humans , Peptidyl-Dipeptidase A , Protein Binding , Protein Engineering , Receptors, Virus/metabolism , Receptors, Virus/therapeutic use , Spike Glycoprotein, Coronavirus
12.
Hum Vaccin Immunother ; 17(12): 5069-5075, 2021 12 02.
Article in English | MEDLINE | ID: covidwho-1488130

ABSTRACT

BACKGROUND: COVID-19 pandemic continues to pose a huge threat to public health. Mass vaccination is needed to achieve herd immunity against SARS-CoV-2. Currently, several vaccines are being inoculated on a large-scale. The willingness of COVID-19 vaccination had been well investigated in the pre-vaccination era, but no reported data in the post-vaccination era yet. METHODS: We conducted a large-scale survey among industrial workers during the vaccination campaign in China. Chi-square test and rank sum test were used to identify differences for various intentions regarding COVID-19 vaccination. Univariate analysis and multivariate regression models were utilized to analyze the relationship among demographic factors, related influencing factors and acceptance of COVID-19 vaccination. RESULTS: A total of 23,940 industrial workers were included, 66.0% were willing to take COVID-19 vaccine, 16.6% were unwilling, and 17.4% were unsure. Participants were more likely to get vaccinated if they were male, aged 45-65, being good educated, married, or being recommended by doctors or nurses. Participants with strong risk perception of COVID-19 infection, strong confidence in COVID-19 vaccine, high attention to COVID-19 vaccine, good health status, bad health habit, and a history of vaccination within three months were also more likely to be vaccinated. CONCLUSIONS: This study calls for more attention and health-related education among industrial workers to improve their acceptance of COVID-19 vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , COVID-19/prevention & control , China/epidemiology , Cross-Sectional Studies , Humans , Male , Mass Vaccination , Middle Aged , Pandemics , SARS-CoV-2 , Vaccination
13.
Vaccines (Basel) ; 9(9)2021 Sep 19.
Article in English | MEDLINE | ID: covidwho-1430990

ABSTRACT

Mass vaccination against the COVID-19 pandemic is ongoing worldwide to achieve herd immunity among the general population. However, little is known about how the COVID-19 vaccination would affect mental health and preventive behaviors toward the COVID-19 pandemic. In this study, we conducted a cross-sectional survey to address this issue among 4244 individuals at several COVID-19 vaccination sites in Guangzhou, China. Using univariate analysis and multiple linear regression models, we found that major demographic characteristics, such as biological sex, age, education level, and family per capita income, are the dominant influencing factors associated with health beliefs, mental health, and preventive behaviors. After propensity score matching (PSM) treatment, we further assessed the changes in the scores of health belief, mental health, and preventive behaviors between the pre-vaccination group and the post-vaccination group. When compared to individuals in the pre-vaccination group, a moderate but statistically significant lower score was observed in the post-vaccination group (p = 0.010), implying possibly improved psychological conditions after COVID-19 vaccination. In addition, there was also a moderate but statistically higher score of preventive behaviors in the post-vaccination group than in the pre-vaccination group (p < 0.001), suggesting a higher probability to take preventive measures after COVID-19 vaccination. These findings have implications for implementing non-pharmaceutical interventions combined with mass vaccination to control the rebound of COVID-19 outbreaks.

14.
Int J Mol Sci ; 22(9)2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1359279

ABSTRACT

Deeply understanding the virus-host interaction is a prerequisite for developing effective anti-viral strategies. Traditionally, the transporter associated with antigen processing type 1 (TAP1) is critical for antigen presentation to regulate adaptive immunity. However, its role in controlling viral infections through modulating innate immune signaling is not yet fully understood. In the present study, we reported that TAP1, as a product of interferon-stimulated genes (ISGs), had broadly antiviral activity against various viruses such as herpes simplex virus 1 (HSV-1), adenoviruses (AdV), vesicular stomatitis virus (VSV), dengue virus (DENV), Zika virus (ZIKV), and influenza virus (PR8) etc. This antiviral activity by TAP1 was further confirmed by series of loss-of-function and gain-of-function experiments. Our further investigation revealed that TAP1 significantly promoted the interferon (IFN)-ß production through activating the TANK binding kinase-1 (TBK1) and the interferon regulatory factor 3 (IRF3) signaling transduction. Our work highlighted the broadly anti-viral function of TAP1 by modulating innate immunity, which is independent of its well-known function of antigen presentation. This study will provide insights into developing novel vaccination and immunotherapy strategies against emerging infectious diseases.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 2/immunology , Antiviral Agents/immunology , Host Microbial Interactions/immunology , Interferon Type I/biosynthesis , ATP Binding Cassette Transporter, Subfamily B, Member 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 2/deficiency , ATP Binding Cassette Transporter, Subfamily B, Member 2/genetics , Animals , Gene Knockout Techniques , HEK293 Cells , Humans , Immunity, Innate , Interferon Regulatory Factor-3/immunology , Mice , Models, Immunological , Protein Serine-Threonine Kinases/immunology , RAW 264.7 Cells , Toll-Like Receptors/agonists , Virus Diseases/immunology
15.
Infect Dis Poverty ; 10(1): 94, 2021 Jul 05.
Article in English | MEDLINE | ID: covidwho-1352672

ABSTRACT

BACKGROUND: Various modalities of vaccines against coronavirus disease 2019 (COVID-19), based on different platforms and immunization procedures, have been successively approved for marketing worldwide. A comprehensive review for clinical trials assessing the safety of COVID-19 vaccines is urgently needed to make an accurate judgment for mass vaccination. MAIN TEXT: A systematic review and meta-analysis was conducted to determine the safety of COVID-19 vaccine candidates in randomized controlled trials (RCTs). Data search was performed in PubMed, Embase, Cochrane library, Scopus, Web of Science, and MedRxiv. Included articles were limited to RCTs on COVID-19 vaccines. A total of 73,633 subjects from 14 articles were included to compare the risks of adverse events following immunization (AEFI) after vaccinating different COVID-19 vaccines. Pooled risk ratios (RR) of total AEFI for inactivated vaccine, viral-vectored vaccine, and mRNA vaccine were 1.34 [95% confidence interval (CI) 1.11-1.61, P < 0.001], 1.65 (95% CI 1.31-2.07, P < 0.001), and 2.01 (95% CI 1.78-2.26, P < 0.001), respectively. No significant differences on local and systemic AEFI were found between the first dose and second dose. In addition, people aged ≤ 55 years were at significantly higher risk of AEFI than people aged ≥ 56 years, with a pooled RR of 1.25 (95% CI 1.15-1.35, P < 0.001). CONCLUSIONS: The safety and tolerance of current COVID-19 vaccine candidates are acceptable for mass vaccination, with inactivated COVID-19 vaccines candidates having the lowest reported AEFI. Long-term surveillance of vaccine safety is required, especially among elderly people with underlying medical conditions.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 Vaccines/administration & dosage , Female , Humans , Male , Middle Aged , Randomized Controlled Trials as Topic , Young Adult
16.
Front Immunol ; 12: 632814, 2021.
Article in English | MEDLINE | ID: covidwho-1150691

ABSTRACT

Increasing evidence suggests that dysregulated immune responses are associated with the clinical outcome of coronavirus disease 2019 (COVID-19). Nucleocapsid protein (NP)-, spike (S)-, receptor binding domain (RBD)- specific immunoglobulin (Ig) isotypes, IgG subclasses and neutralizing antibody (NAb) were analyzed in 123 serum from 63 hospitalized patients with severe, moderate, mild or asymptomatic COVID-19. Mild to modest correlations were found between disease severity and antigen specific IgG subclasses in serum, of which IgG1 and IgG3 were negatively associated with viral load in nasopharyngeal swab. Multiple cytokines were significantly related with antigen-specific Ig isotypes and IgG subclasses, and IL-1ß was positively correlated with most antibodies. Furthermore, the old patients (≥ 60 years old) had higher levels of chemokines, increased NAb activities and SARS-CoV-2 specific IgG1, and IgG3 responses and compromised T cell responses compared to the young patients (≤ 18 years old), which are related with more severe cases. Higher IgG1 and IgG3 were found in COVID-19 patients with comorbidities while biological sex had no effect on IgG subclasses. Overall, we have identified diseases severity was related to higher antibodies, of which IgG subclasses had weakly negative correlation with viral load, and cytokines were significantly associated with antibody response. Further, advancing age and comorbidities had obvious effect on IgG1 and IgG3.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , SARS-CoV-2/physiology , Adolescent , Adult , COVID-19/pathology , COVID-19/virology , Child , China , Cytokines/immunology , Female , Humans , Immunoglobulin A/immunology , Immunoglobulin M/immunology , Male , Middle Aged , SARS-CoV-2/immunology , Severity of Illness Index , T-Lymphocytes/immunology , Young Adult
17.
Viruses ; 13(2)2021 02 21.
Article in English | MEDLINE | ID: covidwho-1090282

ABSTRACT

With the rapid global spread of the Coronavirus Disease 2019 (COVID-19) pandemic, a safe and effective vaccine against human coronaviruses (HCoVs) is believed to be a top priority in the field of public health. Due to the frequent outbreaks of different HCoVs, the development of a pan-HCoVs vaccine is of great value to biomedical science. The antigen design is a key prerequisite for vaccine efficacy, and we therefore developed a novel antigen with broad coverage based on the genetic algorithm of mosaic strategy. The designed antigen has a potentially broad coverage of conserved cytotoxic T lymphocyte (CTL) epitopes to the greatest extent, including the existing epitopes from all reported HCoV sequences (HCoV-NL63, HCoV-229E, HCoV-OC43, HCoV-HKU1, SARS-CoV, MERS-CoV, and SARS-CoV-2). This novel antigen is expected to induce strong CTL responses with broad coverage by targeting conserved epitopes against multiple coronaviruses.


Subject(s)
Coronavirus Infections/prevention & control , Epitopes, T-Lymphocyte/immunology , Viral Proteins/immunology , Viral Vaccines/immunology , Humans , Pandemics , T-Lymphocytes, Cytotoxic/immunology
18.
Hum Vaccin Immunother ; 17(7): 2279-2288, 2021 07 03.
Article in English | MEDLINE | ID: covidwho-1057794

ABSTRACT

Background: A safe and effective vaccine against COVID-19 has become a public health priority. However, little is known about the public willingness to accept a future COVID-19 vaccine in China. This study aimed to understand the willingness and determinants for the acceptance of a COVID-19 vaccine among Chinese adults.Methods: A cross-sectional survey using an online questionnaire was conducted in an adult population in China. Chi-square tests were used to identify differences for various intentions regarding COVID-19 vaccination. The t test was used to identify differences among vaccine hesitancy scores. Multivariable logistic regression was used to analyze the predicated factors associated with the willingness to receive a COVID-19 vaccine.Results: Of the 3195 eligible participants, 83.8% were willing to receive a COVID-19 vaccine, and 76.6% believed the vaccine would be beneficial to their health; however, 74.9% expressed concerns or a neutral attitude regarding its potential adverse effects. Of the participants, 76.5% preferred domestically manufactured vaccines and were more willing to be vaccinated than those who preferred imported vaccines. Multivariable logistic regression indicated that lack of confidence, complacency in regard to health, risk of the vaccine, and attention frequency were the main factors affecting the intention to receive a COVID-19 vaccine.Conclusion: Our study indicated that the respondents in China had a high willingness to accept a COVID-19 vaccine, but some participants also worried about its adverse effects. Information regarding the efficacy and safety of an upcoming COVID-19 vaccine should be disseminated to ensure its acceptance and coverage.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , China , Cross-Sectional Studies , Humans , SARS-CoV-2 , Surveys and Questionnaires , Vaccination
19.
Viruses ; 12(7), 2020.
Article in English | MEDLINE | ID: covidwho-662395

ABSTRACT

With the frequent outbreaks of emerging infectious diseases in recent years, an effective broad-spectrum antiviral drug is becoming an urgent need for global public health. Cholesterol-25-hydroxylase (CH25H) and its enzymatic products 25-hydroxycholesterol (25HC), a well-known oxysterol that regulates lipid metabolism, have been reported to play multiple functions in modulating cholesterol homeostasis, inflammation, and immune responses. CH25H and 25HC were recently identified as exerting broadly antiviral activities, including upon a variety of highly pathogenic viruses such as human immunodeficiency virus (HIV), Ebola virus (EBOV), Nipah virus (NiV), Rift Valley fever virus (RVFV), and Zika virus (ZIKV). The underlying mechanisms for its antiviral activities are being extensively investigated but have not yet been fully clarified. In this study, we summarized the current findings on how CH25H and 25HC play multiple roles to modulate cholesterol metabolism, inflammation, immunity, and antiviral infections. Overall, 25HC should be further studied as a potential therapeutic agent to control emerging infectious diseases in the future.

SELECTION OF CITATIONS
SEARCH DETAIL